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Abstract. Two-phase polydispersed media appear in a wide range of engineering process and environmental problems.
Therefore, the identification of equations allowing a good prediction of the behaviour of such media is an important challenge.
The aim of this paper is to provide an Eulerian description for a heterogeneous suspension constituted of different solid particle
species. Kinetic equations for such media have been written in previous papers [1, 2, 3] with Grad’s thirteen moments method
[4] to obtain an approximation of the transport equation collision integral in the frame of the Standard Enskog Theory. In
this work, we are interested in the case where each particle species has its own temperature which is close to the equilibrium
temperature.
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INTRODUCTION

Because of the growing industrial importance of micro and nano technologies, the human sources of production of
solid nano particles increase. These particles are used, for instance, in cosmetic and pharmaceutical industry as vector
for active substances or in car tyre industry to improve their performance. The increasing presence, in the environment,
of these extremely small objects (of size lower to 100 nm), asks the question of the valuation of health risks that they
can cause by penetrating into organism. Consequently, the study of gaseous flows loaded with solid nano particles
and the identification of equations allowing to predict their behaviour are very important. In this paper, we provide a
kinetic description for a heterogeneous suspension constituted of N different particle species and carried by a viscous
gas. In [3], an Eulerian description for the dispersed media has been obtained in the case where the "temperature"
of each species is equal to the equilibrium temperature. In this work, we present a more general set of equations
with a different "temperature" for each species: We search each species "temperature" as an asymptotical expansion
around the equilibrium temperature. In the next section we present the main assumptions about the suspension and the
collisional process and we recall, briefly, the main results on the kinetic description of a suspension of heterogeneous
spheres having instantaneous, binary and inelastic collisions [1]. In the following sections, as in the usual kinetic
theory, the method of Grad’s thirteen moments [4, 5, 6] is used to obtain an approximation of the collision integral of
the transport equation. Thus, macroscopic conservation equations for each species and global balance equations are
introduced in the frame of the Standard Enskog Theory. The last section is devoted to a short conclusion.

KINETIC DESCRIPTION OF THE SUSPENSION

In this work, the carrier fluid is assumed to be a viscous gas and the collisions between particles are supposed to be
instantaneous, binary, weakly inelastic and non punctual. The suspension is assumed to be heterogenous and to be
made up of N particle species. A particle α (α = 1, ...,N) is assumed to be a sphere of diameter σα and of mass mα .
It is centered at position xα and has the velocity vα . First, the collision of two spheres Pα and Pβ is considered. We
put σαβ = (σα + σβ )/2 and we suppose that, before the collision the particles Pα and Pβ are centered at position
xα and xβ and have the velocities vα and vβ . The relative velocity gβα and the impact vector k are defined by
gβα = vβ − vα and k = (xα − xβ )/ | xα − xβ | with xβ = xα + σα β k during a collision. After the collision, the
particles are still centered in xα and xβ and they have the velocities v′α and v′

β
. The relative velocity after collision is



g′
βα

= v′
β
− v′α . Furthermore, because of the inelasticity of the collisions, we introduce the coefficient of restitution

eαβ with the relation g′βα ·k =−eαβ

(
gβα ·k

)
with 0 < eαβ = eβα ≤ 1. From experimental works [7], in the case of

coal powder, the collisions are weakly inelastic and the restitution coefficient is eαβ ' 0,95. If eαβ = 1, the collisions
are elastic and energy is conserved during the collisions. By considering the momentum balance equation and the
previous assumptions, it’s easy to express the velocities after collision in terms of those before:

v
′
α = vα +

(1+ eαβ )mβ

mα +mβ

(
gβα ·k

)
k and v

′
β

= vβ −
(1+ eαβ )mα

mα +mβ

(
gβα ·k

)
k (1)

and vice-versa. In order to provide a kinetic description for a heterogeneous suspension constituted of N different
solid particle species, it is convenient to introduce a distribution function fα(vα ,xα , t) for each species and to write
a Boltzmann equation for each of these N distribution functions. We recall the Boltzmann equation introduced in a
previous work [1] for the species α:

∂ fα

∂ t
(vα ,xα , t) + vα ·

∂ fα

∂xα

(vα ,xα , t) +
∂

∂vα

· [Fα fα (vα ,xα , t)] =
N

∑
β=1

Jα β

[
fα (vα ,xα , t) , fβ

(
vβ ,xβ , t

)]
(2)

where Jα β ( fα , fβ ) is the part of the collision operator associated with the collisions between the particles α and β

and Fα is the external force per unit of mass acting on a particle α . This force depends on the velocities and on the
nature of the fluid and of the particle. In order to express the collision integral, we introduce the distribution function
f (2)
αβ

(vα ,xα ,vβ ,xβ , t) which caracterizes the statistic of binary collisions and depends on the velocities and positions

of two particles α and β and time. It is defined so that f (2)
αβ

(vα ,xα ,vβ ,xβ , t)dvα dvβ dxα dxβ is the probable number
of pairs of particles which are, at time t, in (xα ,dxα) and (xβ ,dxβ ) with velocities respectively in (vα ,dvα) and
(vβ ,dvβ ).We introduce also the pseudo-inverse collision [6, 8, 9], that is, the collision during which the two particles
Pα and Pβ collide with the velocities v′′α and v′′

β
before collision and vα and vβ after collision. Consequently, the

relations (1) can be used to express vα and vβ in terms of v′′α and v′′
β

. Under these assumptions, we have:

Jα β (xα , t) =
σ2

αβ

e2
αβ

∫
(gβα ·k)>0

[
f (2)
αβ

(v
′′
α ,xα ,v

′′
β
,xα +σαβ k, t)− e2

αβ
f (2)
αβ

(vα ,xα ,vβ ,xα −σαβ k, t)
]
(gβα ·k)dkdvβ (3)

In the case of a heterogeneous suspension, we set [10]:

f (2)
αβ

(vα ,xα ,vβ ,xβ , t) = χαβ (xα ,xβ ) fα(vα ,xα , t) fβ (vβ ,xβ , t) (4)

where χαβ is the radial distribution function that takes into account that the hard particles cannot penetrate each other.
The expression of this distribution function has been discussed in several papers [10, 11, 12, 13, 14]. In the Standard
Enskog Theory (SET), χαβ is the local equilibrium value of the radial distribution function evaluated as a function
of the local densities nδ (δ = 1, ..,N) at some particular point Xαβ . It is the same function as in a fluid mixture
in uniform equilibrium [13]. Different choices are possible for this point: The point of contact of the two colliding
particles, the midpoint of the line connecting their centers or their center of mass for instance. Obviously, in the case of
a monodispersed suspension, these three choices coincide but, when the particles Pα and Pβ are different, each choice
leads to a different solution of the kinetic equation and, obviously, to a different set of macroscopic balance equations.
In [12], a revision of the Enskog theory is proposed in order to avoid this matter: χαβ has to be taken as the a non local
functional of the density fields of the components of the heterogeneous medium. These functionnals are the same as
in a fluid mixture in nonuniform equilibrium. Nevertheless, the extension of this gas theory to solid particles requires
the generalization thermodynamical quantities such as the chemical potential. Because of the physical differences
between gas molecules and solid particles, this generalization is not easy. Moreover, in this paper, we are interested in
a macroscopic description at the same accuracy level as the model presented in [5] for homogeneous dispersed media.
As in [3], we will show in the following that, at this level of description, it is convenient to introduce a SET model.

GLOBAL BALANCE EQUATIONS

The case of homogeneous suspensions has been studied in several papers [5, 6, 8, 9, 14, 15]. In [5, 6, 8], a macroscopic
description by the method of Grad’s thirteen moments has been given for the dispersed media. In the heterogeneous



case, we define the mean value < γ >α of a given particle property γ by the following expression:

< γ >α=
1

nα

∫
γ fα(vα ,x, t)dvα (5)

The velocity fluctuation cα is defined so that cα = vα−uα where uα =< vα >α is the mean velocity of the species α .
As in the usual kinetic theory [10, 16], the Boltzmann equation (2) is multiplied by a function ψα(cα) and integrated
on the vα velocity space in order to obtain a transport equation:

∫ {
∂ fα

∂ t
+ vα ·

∂ fα

∂xα

+
∂

∂vα

· [Fα fα ]
}

ψα(cα)dvα =
N

∑
β=1

∫ {
Jα β

[
fα , fβ

]}
ψα(cα)dvα =

N

∑
β=1

Cαβ (ψα) (6)

The first member of this equation is obvious to express. This has been done in [1, 2] for instance. Concerning the right
hand side member of the transport equation, after a few technical steps (change of notations, use of the pseudo-inverse
collision, exchange between particles Pα and Pβ ), the following equality is written [1]:

Cαβ (ψα) = σ
2
αβ

∫
(gβα ·k)>0

(
ψα(c

′
α)−ψα(cα)

)
f (2)
αβ

(vα ,xα ,vβ ,xα −σαβ k, t)(gβα ·k) dk dvβ dvα (7)

The previous expression of the collision integral can be easily used to prove exactly the conservation of mass for each
species. An additionnal step of symmetrization of the collision operator is required to analyse the global balance of
momentum and energy. We can write [1, 2]:

Cαβ (ψα)+Cβα(ψβ ) = σ
2
αβ

∫
(gβα ·k)>0

[(
ψα(c

′
α)−ψα(cα)

)
f (2)
αβ

(vα ,x,vβ ,x−σαβ k, t)

+
(

ψβ (c
′
β
)−ψβ (cβ )

)
f (2)
αβ

(vα ,x+σαβ k,vβ ,x, t)
]
(gβα ·k) dk dvα dvβ (8)

Moreoever, the radial distribution function χαβ for two particles α and β that are respectively centered in xα and xβ

is assumed to be equal to the radial distribution function χβα for two particles β and α that are respectively centered
in xβ and xα , that is:

χαβ (xα ,xβ ) = χβα(xβ ,xα) (9)

The particle diameters σα (α = 1, ..,N) are assumed to be small compared to the characteristic length L of the flow,
which measures x. Consequently, Taylor expansions allow to write:

f (2)
αβ

(vα ,x+σαβ k,vβ ,x, t) = σαβ ki
∂

∂xi

[
1− 1

2
σαβ k j

∂

∂x j
+

1
6

σ
2
αβ

k jkm
∂ 2

∂x j∂xm

]
f (2)
αβ

(vα ,x+σαβ k,vβ ,x, t)

+ f (2)
αβ

(vα ,x,vβ ,x−σαβ k, t)+O(σ4) (10)

where σ is the order of magnitude of the diameters of the particles (σ << L). Moreover, if the definition (4) and the
property (9) are used, the following relation is easy to prove:

f (2)
αβ

(vα ,x+σαβ k,vβ ,x, t) = f (2)
βα

(vβ ,x,vα ,x+σαβ k, t) (11)

The previous equalities allow to separate the contribution of the collisions in the balance equations in a flux term and
in a source term. This leads to the following expression of the right hand side of the global transport equation [1]:

N

∑
α=1

N

∑
β=1

∫
Jα β (x, t)ψα(cα)dvα = λ (ψ)+

∂

∂xi
θi(ψ)+θi(

∂ψ

∂xi
) (12)

with:

λ (ψ) =
N

∑
α=1

N

∑
β=1

σ2
α β

2

∫
(gβα ·k)>0

∆Ψα β f (2)
αβ

(vα ,x,vβ ,x−σαβ k, t)(gβα ·k)dvα dvβ dk (13)



θi(ψ) =
N

∑
α=1

N

∑
β=1

σ3
α β

2

∫
(gβα ·k)>0

(
ψβ (c

′
β
)−ψβ (cβ )

)
ki

{
1−

σαβ k j

2
∂

∂x j
+

σ2
αβ

k jkm

6
∂ 2

∂x j∂xm

}
f (2)
βα

(vβ ,x,vα ,x+σαβ k, t)(gβα ·k)dvα dvβ dk + O(σ6) (14)

with ∆Ψα β = ψα(c
′
α)−ψα(cα)+ ψβ (c

′
β
)−ψβ (cβ ). According to this expression, it’s easy to observe that, because

of the inelasticity of the collisions, energy is not conserved. Moreover, the source term of the momentum balance
equation, λ (mc), is exactly equal to zero.

Following Grad [4], we expand the single particle distribution function of each species:

fα(vα ,x, t) = fα =
[

1+
aα i j

2T 2
α

cα icα j−
aα immcα i

10T 2
α

(
5− c2

α

Tα

)]
fα o(vα ,x, t) (15)

where cα =| cα | and Tα =< c2
α >α /3. Now, we use an H-theorem proved in the limit of punctual particles and of a

very small inelasticity [2]. In the corresponding thermodynamical equilibrium state, a unique velocity u and a unique
temperature T for all the species are found. We propose a model where all the species have the same mean velocity but
different temperatures. Consequently, we set: uα = u and Tα = T (1 + τα) for α = 1, ..,N in the previous expansion
and we set:

fα o(vα ,x, t) = nα

(
1

2π Tα

) 3
2

exp

[
−(vα −u)2

2Tα

]
(16)

with: n =
N

∑
α=1

nα . This Grad expansion can be interpreted as an expansion around a Maxwellian state of equilibrium

which caracterizes punctual particles undergoing elastic collisions. The effects of the inelasticty and of the size of
the particles are considered as perturbations around this equilibrium state. As in the usual homogeneous case, the
thirteen moments aα i, aα i j, aα imm ... depend only on the position x and on time t. Moreover, it is very easy to show
that aα i = 0 and aα i j = aα ji. The proof of these results is given in the case of an homogeneous suspension in [5] for
instance. The generalization to heterogeneous dispersed media is obvious. In the frame of the Standard Enskog Theory,
approximated formulations for the radial distribution function χαβ can be used [14]. It is evaluated as a function of
the local densities nδ (δ = 1, ..,N) at a point Xαβ that we set as Xαβ = x + µα β σα β k where the parameter µα β is a
real number (0≤ µα β ≤ 1). Naturally, the choice of this parameter allows to give to Xαβ various definitions, as those
that were introduced in the first section. For instance, if µα β = 1/2 then Xαβ is the midpoint of the line joining the
centers of the two colliding spheres. Nevertheless, at the same accuracy level as in [5], a symmetrization of the source
term (13) of the collision operator allow to build a model that does not depends on the value of µα β [3]. In order to
build such a model, we set:

χαβ (x,x±σα β k) = χαβ (x±µα β σα β k) (17)

We will show in the following, that the terms depending on µα β disappear of the equations at the chosen level of
accuracy. Then, the two particle distribution function can be written as:

f (2)
αβ

(vα ,x,vβ ,x−σαβ k, t) = χαβ (x−µα β σα β k) fα(vα ,x, t) fβ (vβ ,x−σα β k, t) (18)

With this hypothesis about the radial distribution function, the expansion of the single particle distribution function
near a Maxwellian state, and consequently the derivation of the collision terms of the balance equations, is simplified.
Following [3], the source term (13) is expressed as:

λ (ψ) =
N

∑
α=1

N

∑
β=1

Lα β (19)

with:

Lα β =
σ3

α β

4

∫
(gβα ·k)>0

∆Ψα β χαβ (x) fα fβ

σα β

2
kl

∂

∂xl

(
ln

fα

fβ

)
(gβα ·k)dvα dvβ dk

+
σ2

α β

2

∫
(gβα ·k)>0

∆Ψα β χαβ (x) fα fβ (gβα ·k)dvα dvβ dk+O(σ4) (20)



where fα = fα(vα ,x, t) and fβ = fβ (vβ ,x, t). In order to obtain a description of the same level of accuracy as the
description introduced in the paper of Jenkins et al. [5] for a homogeneous mixture, we keep only the terms of the two
lowest order in the previous relation and we obtain, as in [3], an expression of the source term (20) that does not depend
on µαβ . In [5], the authors make two additionnal assumptions regarding the flow. First, they consider that the spatial
derivatives of the mean field are small and then the flows of dense suspension with large mean velocity gradient are
out of the scope of their model. Second they focuse on flows in which the departure of the distribution function from
the Maxwellian state is small. The same assumptions are made in this work for the heterogeneous mixture: We assume
that the quantities ai j/T , τα and ai jk/T 3/2 are small and of the same order of magnitude. With these assumptions, we
write an approximate expression for the collisional source and the collisional flux that are linear in the perturbations
ai j, τ and ai jk and the spatial gradients. Consequently, the collisional flux term (14) may be written as:

θi(ψ) =
N

∑
α,β=1

θαβ i =
N

∑
α,β=1

σ3
α β

2
χαβ (x)

∫
(gβα ·k)>0

(
ψβ (c

′
β
)−ψβ (cβ )

)
ki fα fβ dvα dvβ dk+O(σ4) (21)

where only the lowest order is retained in order to write an expression of the collisional flux at the same order of
precision as Lα β . According to the case of the source term, as in [3], we remark that µαβ does not appear in the
previous expression at this order of approximation. Then, the integrations are carried out with the help of a formal
calculation software. In order to be intelligible, the details of the calculations are not given in this paper: they are
standard (see for instance [10], [5]) but too long to be reproduced here. Finally, we obtain the expressions for the
collision terms of the global balance equations. We give, for instance, the flux term of the global momentum balance
equation:

θα β i(mβ cβ j) =−
2π (1+ eα β ) ρα ρβ

15(mα +mβ )
σ

3
α β

χα β

[
5T δi j

(
1+

τα + τβ

2

)
+aα i j +aβ i j

]
+O(σ4

α β
) (22)

All the other terms have been explicitly calculated but they are not reproduced here for the sake of brevity. The
results are consistent with the homogeneous case and with the case where all the species have the same temperature.
Compared to this last case, the temperature difference between the species generates a source of energy and a flux of
third order moments; that is only the source term of the energy balance and the flux term of the third order moments
balance equation are modified.

TRANSPORT EQUATIONS FOR EACH SPECIES

Now, we will derive the balance equations for each species. This has already be done in the case of the mass
conservation. For the other quantities (momentum, energy and triple velocity correlations), we start from the general
balance equation for the species α (6). An explicit form of the left hand side member of this equation has been given
in [2]. Obviously, the aim of this section is to obtain a set of equations at the same accuracy level as the global balance
set of equations presented in the previous section. Consequently, we are still in the frame of the Standard Enskog
Theory and then we assume that the two particle distribution function can be expressed with the relation (18). As in
the previous section, we assume that the particle diameters are small compared to the characteristic length of the flow.
Then, as in [3], the collision term of the general balance equation for the species α can be expressed as follows:

Cαβ (ψα) = γαβ (ψα)− ∂

∂x j
θαβ j(ψα)− ∂uαl

∂x j
θαβ j(

∂ψα

∂cαl
)+O(σ4

α β
) (23)

with :

γαβ (ψα) =
σ2

αβ

2

∫
(gβα ·k)>0

(gβα ·k)
(

ψ
′
α −ψα

)
χαβ

[
2 fα fβ +σαβ k j

(
fβ

∂ fα

∂x j
− fα

∂ fβ

∂x j

)]
dkdvβ dvα (24)

where ψα = ψα(cα) and ψ
′
α = ψα(c′α). At this approximation order, the collision term does not depend on the value of

the coefficient µαβ which appears in the definition of χα β in the Standard Enskog Theory. Consequently, at the same
accuracy level as in the case of the global balance equations, we obtain, for each species, a set of balance equations
that do not depend on the value of µαβ . In this expression, the terms in θαβ j are easy to calculate from the flux terms



given in the previous section. On the other hand, the source terms γαβ (ψα) are unknown and must be evaluated. As for
the global balance equations, the end of the calculations is standard but not very easy: It’s too long to be reproduced
here. Finally, we obtain the expressions for this contribution to the collision terms of the balance equations for each
species. As in the previous section, all the terms have been explicitly calculated but, for the sake of brevity, we give
the final result only for the energy of the species α:

γαβ (mα cα icα j) =
8(1+ eαβ )ρα ρβ

15(mα +mβ )
χαβ σ

2
αβ

√
πT
[
5(aβ i j−aαi j)+5T (τβ − τα)δi j

+ 10
eαβ mβ −mα

mα +mβ

T
(

1+
3
4
(τα + τβ )

)
δi j + 3

mβ (eαβ −1)−2mα

mα +mβ

(aαi j +aβ i j)
]

+
2(1+ eαβ )ρα ρβ

15(mα +mβ )
χαβ σ

3
αβ

πT
[

9mα +3mβ (1−2eαβ )
mα +mβ

(
∂uαi

∂x j
+

∂uα j

∂xi

)
+

4mα −2mβ (1+3eαβ )
mα +mβ

∂uαk

∂xk
δi j

]
+O(σ4

α β
) (25)

The results are consistent with the case where all the species have the same temperature [3]. Compared to this case,
the source terms of the momentum balance equation and of the third order moments balance equation are unchanged:
Only the source term of the energy balance equation is modified.

CONCLUSION

An Eulerian description for a heterogeneous suspension constituted of N different solid particle species with its own
temperature is introduced from Grad’s thirteen moment method in the frame of the Standard Enskog Theory. The
distinction between the temperature of each species bring about some modifications of the collision terms of the
balace equations but the method presented in [3] are still suitable: At the usual level of accuracy for a suspension [5],
the macroscopic description does not depend on the point where the the radial distribution function is written. In the
future, different asymptotic cases for a suspension with two types of particles will be analysed: The case of a great
difference in the particle sizes and/or masses and the case of a great difference in the number densities of each species.
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